Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. Since the 1960s, a deep groundwater system in Wright Valley, Antarctica, has been the hypothesized source of brines to hypersaline Don Juan Pond and Lake Vanda, both of which are rich in calcium and chloride. Modeling studies do not support other possible mechanisms, such as evaporative processes, that could have led to the current suite of ions present in both waterbodies. In 2011 and 2018, an airborne electromagnetic survey was flown over Wright Valley to map subsurface resistivity (down to 600 m) in exploration of liquid water. The surveys revealed widespread unfrozen brine in the subsurface near Lake Vanda, Don Juan Pond, and the North Fork of Wright Valley. While our geophysical survey can neither confirm nor deny deep groundwater connectivity between Lake Vanda and Don Juan Pond, it does point to the potential for deep valley-wide brine, likely within the Ferrar Dolerite formation.more » « less
-
null (Ed.)SUMMARY Airborne electromagnetics (EM) is a geophysical tool well suited to mapping glacial and hydrogeological structures in polar environments. This non-invasive method offers significant spatial coverage without requiring access to the ground surface, enabling the mapping of geological units to hundreds of metres depth over highly varied terrain. This method shows great potential for large-scale surveys in polar environments, as common targets such as permafrost, ice and brine-rich groundwater systems in these settings can be easily differentiated because of their significant contrasts in electrical properties. This potential was highlighted in a 2011 airborne EM survey in the McMurdo Dry Valleys that mapped the existence of a large-scale regional groundwater system in Taylor Valley. A more comprehensive airborne EM survey was flown in November 2018 to broadly map potential groundwater systems throughout the region. Data collected in this survey displayed significant perturbations from a process called induced polarization (IP), an effect that can greatly limit or prevent traditional EM workflows from producing reliable geological interpretations. Here, we present several examples of observed IP signatures over a range of conditions and detail how workflows explicitly designed to handle IP effects can produce reliable geological interpretations and data fits in these situations. Future polar EM surveys can be expected to encounter strong IP effects given the likely presence of geological materials (e.g. ice and permafrost) that can accentuate the influence of IP.more » « less
-
null (Ed.)Abstract. Previous studies of the lakes of the McMurdo Dry Valleys haveattempted to constrain lake level history, and results suggest the lakeshave undergone hundreds of meters of lake level change within the last20 000 years. Past studies have utilized the interpretation of geologicdeposits, lake chemistry, and ice sheet history to deduce lake levelhistory; however a substantial amount of disagreement remains between thefindings, indicating a need for further investigation using new techniques.This study utilizes a regional airborne resistivity survey to provide novelinsight into the paleohydrology of the region. Mean resistivity mapsrevealed an extensive brine beneath the Lake Fryxell basin, which isinterpreted as a legacy groundwater signal from higher lake levels in thepast. Resistivity data suggest that active permafrost formation has beenongoing since the onset of lake drainage and that as recently as 1500–4000 years BP, lake levels were over 60 m higher than present. This coincideswith a warmer-than-modern paleoclimate throughout the Holocene inferred bythe nearby Taylor Dome ice core record. Our results indicate Mid to LateHolocene lake level high stands, which runs counter to previous researchfinding a colder and drier era with little hydrologic activity throughoutthe last 5000 years.more » « less
An official website of the United States government
